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Abstract. The expansion structure of a CI vector as combination of excitations from a model-space refer-
ence determinant is investigated. It is shown that between the linear and the exponential expansions there
is a relation which is similar to the single-reference case, if the internal excitations are adsorbed into the
reference vector. Moreover, expansions with respect to different determinants are related by a set of linear
equations. By using these two properties, a State-Specific Coupled-Cluster formalism is proposed.

PACS. 31.25.-v Electron correlation calculations for atoms and molecules –
31.15.Dv Coupled-cluster theory

1 Introduction

The Coupled Cluster (CC) is now a well established for-
malism, widely used in Quantum Chemistry [1–3]. In the
Single-Reference (SR) version of this technique (SR-CC),
the cluster expansion is usually truncated at the level of
Single and Double (SD) excitations. The space in which
the CC equations are projected is therefore the space of all
SD excitations from a single determinant, which is called
the reference function [4,5]. In the CC theory, as in Con-
figuration Interaction (CI), if we wish to improve the ap-
proximation we have two possibilities. We can add the
contribution of triple (or triple+quadruple, etc.) excita-
tions, either in an approximate way [6–8] or within the
full CC formalism [9–12]. Alternatively, we may consider
a Multi-Reference (MR) reference function, i.e. a reference
composed by a linear combination of many determinants,
as is done in the Multi-Reference Configuration Interac-
tion (MR-CI) approach. The experience of CI shows that
the second possibility is by far the most effective in all
cases where the wave-function has significant components
over more than a single determinant, as in most bond-
breaking cases. However, the generalization of the SR-CC
approach to Multi-Reference Coupled Cluster (MR-CC)
turned out to be far from trivial, and a number of differ-
ent formalisms have been proposed. They can be divided
into three broad classes [13,14]:

1. valence-universal or Fock-space theories (VU-CC)
[14–21], where a family of model spaces is considered,
characterised by a number of active electrons variable
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between 0 and the real value of the studied system. A
cluster operator is then defined, that simultaneously
transforms each model space into its corresponding ex-
act target space;

2. state-universal or Hilbert-space theories (SU-CC)
[22–28], where a single model space, characterised by
the actual number of electrons of the system, is trans-
formed by the cluster operator into the exact target
space;

3. one-state or state-selective approaches (SS-CC)
[30–46], where the cluster operator contains only the
information about the actual state we want to study.

For review papers on this subject, see refer-
ences [47–49].

From the point of view of the practical implementa-
tion, these approaches are of decreasing complexity, as
the number of different exact states of the system that
must be considered decreases going from 1 to 3. In partic-
ular, a state-selective formalism is very attractive, since
we concentrate only on the specific state that is going to
be studied and we do not need to consider a number of
other, usually irrelevant, states. However, although very
attractive from a computational point of view, most of the
state-selective approaches presented so far suffer from se-
rious drawbacks: these formalisms are usually incomplete
(the Full-CI wave-function is not recovered if a complete
expansion for the cluster operator is used) or redundant
(the cluster operator contains amplitudes which cannot be
uniquely determined within the formalism).

In this article, a Multi-Reference Cluster Expansion
for the electronic wave function is proposed. The start-
ing point of the formalism is the expansion of the exact
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wave function |Ψ〉 from an arbitrary Slater determinant
belonging to the model space, |ΦI〉. The vector |Ψ〉 is ex-
panded as a linear combination of excitation operators
acting on |ΦI〉, that move electrons from occupied to vir-
tual spin-orbitals (in |ΦI〉). This expansion is identical to
the cluster expansion of SR-CC, hence the whole |Ψ〉 can
be exactly recovered, provided all the possible excitations
are considered. Each excitation operator can be expressed
as a product of elementary (i.e., one-electron) excitations:
internal if going to an active spin-orbital, external other-
wise.

As noted by several authors [38–40], the expansion
operator from a given |ΦI〉 can be naturally partitioned
into two terms: one containing purely internal excitations,
and a remaining term with excitations containing at least
one external elementary excitation. The internal part of
the expansion operator, acting on |ΦI〉, produces the pro-
jection |Ψ̄〉 of |Ψ〉 onto the model space, apart from a
multiplicative constant. Therefore the exact wave func-
tion |Ψ〉 can be expressed in many equivalent ways as a
non-internal excitation operator acting on |Ψ̄〉, each oper-
ator being associated to a corresponding determinant |ΦI〉
of the model space. A set of relations connects the non-
internal terms associated to different determinants |ΦI〉,
and this permits to get rid of the redundancies often asso-
ciated to State-Selective MR-CC. Finally, we assume that
these equations, that are rigorously exact for the complete
expansion of |Ψ〉, still hold if the expansion is truncated to
a given level of excitation. In this way, a MR-CC scheme
is obtained.

2 General formalism

We consider a system containing m electrons which can
be variously distributed among n spin-orbitals. These are
divided into:

1. active spin-orbitals, |φi〉, which are the spin-orbitals
that can be occupied in the reference function, and
are indicated by the labels i, j, k, l, etc.;

2. external spin-orbitals, |φa〉, which are always unoccu-
pied in the reference, and are indicated by the labels
a, b, c, d, etc.

The formalism can be easily generalized to the com-
mon three-class partition of the orbitals, where a third
class of core orbitals, occupied in all the reference deter-
minants, is also considered. For the sake of simplicity, we
will consider here only the two-class partition. We will
assume throughout that the multi-determinant reference
wave-function is described as a combination of determi-
nants generated from a complete active space (CAS). Al-
though the restriction to a CAS reference might be seen
as limiting, it leads to a much simpler theory.

We indicate with L the whole Hilbert space generated
by all the Slater determinants having m electrons in n
spin-orbitals. Slater determinants having electrons in in-
ternal spin-orbitals only are called internal, and indicated
by |ΦI〉, |ΦJ〉, etc., while determinants containing at least

one external occupied spin-orbital are called external, and
indicated by |ΦA〉, |ΦB〉, and so on.

We adopt the usual second-quantization formalism.
The creation operators associated to an active (i) and
external (a) spin-orbitals are indicated as a+

i and a+
a , re-

spectively, while the corresponding destruction operators
as ai and aa. Since the number of electron is fixed, cre-
ation and destruction operators usually appear in pairs,
and it is convenient to define the elementary excitation
operators

Êki ≡ a+
k ai (1)

and

Êai ≡ a+
a ai (2)

that are the usual unitary-group generators. It is useful
to have a short-hand notation for products of operators.
We use the compact notations ip and aq to indicate the
sets i1, ..., ip and a1, ..., aq respectively, where the indices
are arranged in strictly ascending order: i1 < i2 < ... < ip
and a1 < a2 < ... < aq. Active spin-orbitals in |ΦI〉 can be
either occupied or virtual, while external spin-orbitals are
always virtual. An excitation operator, involving p internal
and q external one-electron excitations is written as

Ê
kpaq
ip+q

= Êk1
i1
...Ê

kp
ip
Êa1
ip+1

...Ê
aq
ip+q

. (3)

The short-hand notation Êσ instead of Êkpaq
ip+q

will also be
used.

The excitation Êσ, acting on an internal determinant
|ΦI〉, can produce either zero or an external determinant
|ΦA〉 (purely internal excitations are not necessary and
will not be considered in the present formalism). If the
determinant Êσ|ΦI〉 is not zero, the excitation Êσ is said
to belong to |ΦI〉 (in short, Êσ ∈ |ΦI〉). In this case, in
equation (3) i runs over occupied spin-orbitals of |ΦI〉,
while k and a run over virtual spin-orbitals of |ΦI〉 (ac-
tive and external, respectively). The label (I) since the
ranges of i and k depend on the reference index I, and
the notation Êσ(I) is used to stress this fact.

An excitation operator V (I), given by a linear combi-
nation of excitations Êkpaq

ip+q
(I), can be decomposed as a

sum of operators with given levels p and q of internal and
external excitation, respectively:

V (I) =
∑
p,q

Vp,q(I), (4)

where we have defined

Vp,q(I) =
∑

ip+q kp aq

Ê
kpaq
ip+q

(I)vkpaq
ip+q

(I) (p, q fixed). (5)

The two indices p and q in equation (4) run from zero to
the total number of electrons,m. It is also useful to decom-
pose V (I) with respect to the level of external excitations
only:

V (I) =
∑
q

Vq(I), (6)
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with

Vq(I) =
∑
p

Vp,q(I) (q fixed). (7)

A determinant |Φ〉 belonging to L can be classified accord-
ing to the number of external occupied spin-orbitals, and
we write |Φ〉 ∈ Lq if it has exactly q external occupied
spin-orbitals. We indicate by L0 the subspace spanned by
the internal configurations, and by L⊥ its orthogonal com-
plement. The subspace L0 is the Model Space, and let N
be its dimension. We indicate by P0 the orthogonal pro-
jector onto the model space:

P0 =
N∑
I=1

|ΦI〉〈ΦI |. (8)

The Lq are mutually-orthogonal spaces, whose direct sum
gives L:

L =
m⊕
q=0

Lq. (9)

We define also the subspace Lp,q(I) as the space spanned
by all the possible determinants generated by p inter-
nal and q external excitations acting on the model-space
determinant |ΦI〉. The Lp,q(I) are mutually-orthogonal
spaces, whose direct sum over p gives Lq:

Lq =
m⊕
p=0

Lp,q(I). (10)

Note that Lp,q = ∅ if p+ q > m.
An eigenstate |Ψ〉 of the electronic Hamiltonian H sat-

isfies the Schrödinger equation

H|Ψ〉 = E|Ψ〉, (11)

where E is the corresponding energy. A reasonable de-
scription of |Ψ〉 is by hypothesis given by the projection
|Ψ̄〉 of |Ψ〉 onto the model space,

|Ψ̄〉 = P0|Ψ〉 =
∑
I

CI |ΦI〉 · (12)

It is convenient to adopt the so-called intermediate nor-
malization, which consists in assuming that it is the pro-
jected solution |Ψ̄〉, rather than the complete solution |Ψ〉,
to be normalized:

〈Ψ̄ |Ψ̄〉 =
∑
I

C2
I = 1. (13)

3 Cluster expansion

In this section the exponential expansion of a generic vec-
tor, from a Slater determinant |ΦI〉, will be obtained. The
relations existing between the expansions from different
determinants will also be discussed. We stress the fact

that the relations obtained in the present section are valid
for any vector belonging to L, regardless its relationship
with the Hamiltonian H. In the SR case, a vector |Ψ〉 can
be obtained from a Slater determinant |Φ0〉 using a poly-
nomial expansion,

|Ψ〉 = (1 +R)|Φ0〉, (14)

or an exponential expansion,

|Ψ〉 = eT |Φ0〉 · (15)

Equation (14) is at the basis of CI methods, while equa-
tion (15) is the starting point of CC methods.

To obtain the corresponding expansions in the MR
case, let us consider all the possible excitations Êσ(I) that
are not purely internal (i.e., with q 6= 0). It is shown in
the Appendix that, if CI 6= 0, the vectors |Êσ(I)Ψ̄〉 (for a
fixed value of I) are linearly independent and form a basis
of L⊥. By taking advantage of this fact, we can express
|Ψ〉 in this new basis and we obtain the expansion

|Ψ〉 = (1 +R(I))|Ψ̄〉 · (16)

The excitation operator R(I) has the structure defined by
equations (4, 5):

R(I) =
∑
p,q

Rp,q(I), (17)

with

Rp,q(I) =
∑

ip+q kp aq

Ê
kpaq
ip+q

(I)rkpaqip+q
(I). (18)

Since R(I) does not contain purely internal excitations,
R0 = 0, i.e. Rp,0 = 0 for any p. In a similar way the
exponential expansion equation (15) gives

|Ψ〉 = eT (I)|Ψ̄ 〉 · (19)

(see, for instance, Refs. [38–40] for a detailed discussion
of this point). By comparing the two expansions of |Ψ〉,
equations (16, 19), one obtains

1 +R(I) = eT (I). (20)

By equating the terms corresponding to a fixed level of
external excitations (internal levels are mixed, because the
excitation operators act on the whole |Ψ̄〉), we obtain

Rq(I) =
[
eT (I)

]
q
, (21)

where the notation [...]q indicates that only terms with
exactly q external excitations are kept. This chain of rela-
tions gives

R1(I) = T1(I),

R2(I) =
1
2
T 2

1 (I) + T2(I), ... (22)
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with the obvious inverse relations

T1(I) = R1(I),

T2(I) =
1
2
R2

1(I)−R2(I), ... (23)

These equations show that there is a very simple relation
between R(I) and T (I), formally identical to the relation
that holds in the single-reference case.

Different operators R(I), relative to different deter-
minants |ΦI〉, are not independent, but their amplitudes
must satisfy a set of linear equations. To obtain these re-
lations, we project equation (16) onto the linearly inde-
pendent vectors |Êσ(I)Ψ̄ 〉:

〈ÊσΨ̄ |Ψ〉 = 〈ÊσΨ̄ |R(I)Ψ̄〉 σ ∈ I. (24)

Note that, although the vectors |Êσ(I)Ψ̄ 〉 are not orthog-
onal, the projection onto these vectors is more conve-
nient than the analogous projection onto the |Êσ(I)ΦI〉.
Indeed, the vectors |Êσ(I)ΦI〉 depend explicitly on I,
in the sense that the same excitation Êσ gives two dif-
ferent results when acting onto different determinants:
Êσ|ΦI〉 6= Êσ|ΦJ 〉 if I 6= J . On the other hand, the vectors
|Êσ(I)Ψ̄ 〉 do not depend on I, except for the requirement
σ ∈ I, so can simply write |ÊσΨ̄〉. Using the explicit ex-
pression for R(I), equations (17, 18), we obtain

〈ÊσΨ̄ |Ψ〉 =
∑
τ∈I
〈ÊσΨ̄ |Êτ Ψ̄〉rτ (I) σ ∈ I, (25)

where rτ (I) is a short-hand notation to indicate a non-
internal coefficient rkpaqip+q

(I). This equation is of the form

rσ(I) =
∑
τ∈I
Cστ (I)rτ (I) σ ∈ I, (26)

where we have defined

rσ(I) ≡ 〈ÊσΨ̄ |Ψ〉 σ ∈ I, (27)

and the metric matrix

Cστ (I) ≡ 〈ÊσΨ̄ |Êτ Ψ̄〉 σ, τ ∈ I. (28)

The coefficients rσ(I) and rσ(I) are the covariant and con-
travariant components, respectively, of |Ψ〉 in the |ÊσΨ̄〉
basis. Note the asymmetry between the two sets: the rσ(I)
depend explicitly on I, while the rσ(I) do not, rσ(I) = rσ.
The relation between covariant and contravariant compo-
nents is

〈Ψ |Ψ〉 = 1 +
∑
σ

rσ(I)rσ (29)

if the intermediate normalization is used for |Ψ〉·
Equation (26) can be inverted, since the metric C(I) is

not singular, as shown in the Appendix. The matrix C(I)
is a submatrix of the singular matrix C, whose elements

Cστ ≡ 〈ÊσΨ̄ |Êτ Ψ̄〉 (30)

do not depend on I. Therefore the metric C(I) depend on
I only through the range of the indices σ and τ , that must
belong to I. By inverting equation (26), we obtain

rσ(I) =
∑
τ∈I
Cστ (I) rτ , (31)

where Cστ (I) are the elements of the inverse matrix
of C(I):

Cστ (I) ≡ (C−1)στ (I). (32)

The coefficients of the matrix C−1 now depend explicitly
on I. Equation (31) gives the desired relations that con-
nect the coefficients rσ(I) to a unique set of amplitudes rσ ,
so that the number of variables of the expansion is greatly
reduced. The amplitudes rσ are not completely arbitrary,
since they are the components of the vector |Ψ〉 in the
overcomplete basis |ÊσΨ̄〉. The coefficients rσ are there-
fore orthogonal to the null space of C. A unique set of
coefficients rs can be obtained by working in the orthog-
onal complement of the null space.

From a computational aspect, it is noteworthy that
the overlap matrix is block-diagonal, since the two func-
tions Êσ|Ψ̄〉 and Êτ |Ψ̄〉 are orthogonal if σ and τ differ in
any external orbital [51,52]. This is a crucial point, since
portions of the overlap matrix must be inverted in order
to compute Cστ (I). If the cluster operator is truncated at
the level of double excitations, the dimension of largest
blocks is given by the number of semi-internal excitations
of the kind a+

p a
+
i ajak|Ψ̄〉 with p fixed. Therefore, the di-

mension of each block is N3
act, well within the possibilities

of modern computers for the values of Nact of the standard
CAS-SCF calculations.

4 Coupled-cluster equations

The expansion obtained in the previous section is valid
for any vector |Ψ〉. Let us suppose |Ψ〉 to be now an ex-
act eigenvector of the Hamiltonian H. We expand |Ψ〉 in
exponential form, |Ψ〉 = eT (I)|Ψ̄〉, and we impose |Ψ〉 to
satisfy the Schrödinger equation:

HeT (I)|Ψ̄〉 = EeT (I)|Ψ̄〉. (33)

To obtain a MR-CC formalism, we proceed as in the stan-
dard SR-CC case, and we multiply on the left both mem-
bers by e−T (I):

e−T (I)HeT (I)|Ψ̄〉 = E|Ψ̄〉. (34)

If we take the scalar product with 〈ÊσΨ̄ |, we obtain

〈ÊσΨ̄ |e−T (I)HeT (I)|Ψ̄〉 = 0 σ ∈ I (35)

since the vectors |ÊσΨ̄〉 are orthogonal to |Ψ̄〉. If, on the
other hand, we project equation (34) onto L0, we obtain

P0e−T (I)HeT (I)|Ψ̄〉 = E|Ψ̄〉. (36)
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To take the scalar product with the vectors 〈ÊσΨ̄ | is cru-
cial if the excitations are to be truncated at a given exci-
tation level to obtain an approximate CC formalism, be-
cause the vectors |ÊσΨ̄〉 span precisely the tangent space
in |Ψ̄〉 of the manifold described by the vectors eT (I)|Ψ̄〉.
This insures that there are exactly as many equations as
coefficients.

Equations corresponding to different values of I must
now be merged together, so that no determinant |ΦI〉
plays a special role, and we can take advantage of
the relations (31). To this purpose, we multiply each
equation (35), corresponding to a given value of I, by an
arbitrary constant λI , and add together all the terms pro-
jected onto the same vector 〈ÊσΨ̄ |. There are many of such
contributions, each one corresponding to a different I, i.e.
each time we have σ ∈ I. Finally we get

〈ÊσΨ̄ |
∑
I3σ

λIe−T (I)HeT (I)|Ψ̄〉 = 0 ∀σ. (37)

Note that the sum goes only on those I that admit σ as
an excitation. These are the equations for the external ex-
citations, one for each σ. There is a one-to-one correspon-
dence between the equations and the coefficients rσ that
are needed to build up the excitation operator T (I). In a
similar way, if we project equation (36) onto L0, multiply
by λI and add together all the contributions, we obtain

P0

∑
I

λIe−T (I)HeT (I)|Ψ̄〉 = E
∑
I

λI |Ψ̄〉. (38)

These are N equations, exactly the right number to obtain
the energy E and the N coefficients CI . In fact, since
we adopted the intermediate normalization, the CI are
not all independent, but they must satisfy equation (13).
Equations (37, 38) are coupled, and they must be solved
simultaneously.

In mixing the equations corresponding to different val-
ues of I, some care must be put in the choice of the con-
stant λI , that are completely arbitrary in the exact case.
Because of the intermediate normalization, we can write

|Ψ〉 =
∑
I

CI |ΨI〉 (39)

where we have defined

|ΨI〉 ≡ CI |Ψ〉. (40)

Of course we have

|Ψ̄I〉 ≡ P0|ΨI〉 = CI |Ψ̄〉. (41)

The |Ψ̄I〉 have a very simple geometrical interpretation:
they are the projection onto the space generated by |Ψ〉 of
the model-space determinants |ΦI〉. If we expand |ΨI〉 as

|ΨI〉 = eT (I)|Ψ̄I〉, (42)

we obtain

|Ψ〉 =
∑
I

CI |ΨI〉 =
∑
I

CIeT (I)|Ψ̄I〉 =
∑
I

C2
I eT (I)|Ψ̄〉.

(43)

This suggests to choose λI = C2
I . In this way the CC

equations become

P0

∑
I

C2
I e−T (I)HeT (I)|Ψ̄〉 = E|Ψ̄〉 (44)

and

〈ÊσΨ̄ |
∑
I3σ

C2
I e−T (I)HeT (I)|Ψ̄〉 = 0. (45)

Although the vectors 〈ÊσΨ̄ | are in general linearly depen-
dent, the projected equations (45) are not redundant, be-
cause of the limitation in the sum over I. For an example,
see the following section.

Equations obtained up to this point are exact in the
case of a complete expansion of the wave function. Their
solution is equivalent to the solution of the Full-CI prob-
lem and therefore of no practical use. However, as com-
mon practice in the CC theory, they can be truncated at
a given excitation level. In doing this, one assumes that
the same relations that are true for the exact coefficients
still hold for the approximated ones. At this point, some
general consideration is appropriate. Firstly, it is impor-
tant the fact that the one-to-one correspondence between
equations (37) and the coefficients rσ is always preserved,
regardless the adopted truncation scheme. This insures
that the right number of coefficients can always be deter-
mined, without need of further conditions. Moreover, the
matrices C(I) are non-singular. Therefore it is possible to
use equation (31) to go from the rσ to the rσ(I), which are
necessary to construct the operators T (I). The formalism
is both complete and not redundant.

The present approach is in some aspects similar
to the formalism developed by Mukherjee and co-
workers [42–44]. In both formalisms, a different cluster op-
erator T (I) is associated to each determinant |ΦI〉 of the
model space. In the approach discussed in reference [44],
a set of sufficient conditions for a unique determination
of the coefficients tσ(I) is postulated, and the size exten-
sivity of the resulting formalism is proved. In the present
approach, on the other hand, the coefficients tσ(I) do not
play the role of the fundamental variables, since they can
be derived from a small number of independent quantities,
via equations (31, 23). Therefore, while the number of in-
dependent amplitudes of the former approach is exactly
the same as in SU-MRCC, in the present formalism this
number is divided by a factor N (the size of the CAS).

Equation (44), on the other hand, is equivalent to di-
agonalizing an Effective Hamiltonian constructed with the
current guess of internal CI coefficients CI and external
cluster amplitudes T (I).

5 An illustrative example

In order to illustrate the structure of the proposed expo-
nential ansatz, it is instructive to apply this scheme to a
very simple case. The behaviour of approximated CC so-
lutions with a three-dimensional Hamiltonian will be ex-
aminated. In this case, the CC equations become simple
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Fig. 1. Exact energies of the model Hamiltonian (Eq. (46)):
ground-state energy E0 (�) and excited-state energies E1 (+)
and E2 (�).

algebraic equations, and their solution is straightforward.
Let us consider a system composed of one electron and
three orbitals: two active (φi and φj) and one virtual (φa).
The whole space is spanned by the three vectors

|Φ1〉 ≡ a+
i |0〉,

|Φ2〉 ≡ a+
j |0〉,

|Φ3〉 ≡ a+
a |0〉.

The first two form a basis for the model space, while the
third one span the outer space. As Hamiltonian, let us
choose the matrix

H =
−D V 0
V D V
0 V 1

· (46)

The parameter D is chosen in the interval [−2.0,+2.0].
In the limit of weak coupling, we can predict the exis-
tence three avoided crossing between the states described
by the basis vectors |Φ1〉, |Φ2〉 and |Φ3〉: in D = 0 (in-
volving |Φ1〉 and |Φ2〉), D = −1 (involving |Φ1〉 and |Φ3〉),
and D = 1 (involving |Φ2〉 and |Φ3〉). Two values of V are
considered, corresponding to two different strengths of the
coupling between model and outer space: weak (V = 0.5),
and strong coupling (V = 2.0). Figure 1 shows the exact
energies in the case V = 0.5. In Figure 2, for the same
value of V , the weight of the normalized ground-state so-
lution on |Φ1〉, |Φ2〉, and on the whole model space are
reported. (The weight of a normalized vector |Ψ〉 onto a
space spanned by basis orthogonal determinants |ΦI〉 is de-
fined as w =

∑
I |〈Ψ |ΦI〉|2.) The exact solution changes its

nature in correspondence of the avoided crossing (D = 0),
but remains well described by the model space. Figure 3
reports, again for V = 0.5, the weight on the model space
of the second and third solutions. It appears that there
are two avoided crossings between these two solutions: a
weakly-avoided one (D = −1.0), and a strongly avoided
one (D = 1.0), as can also be seen from Figure 1.

Fig. 2. Weights of the normalized ground-state wave function
|Ψ0〉 on the vectors |Φ1〉 (�), |Φ2〉 (+), and on the whole CAS
space, |Φ1〉⊕|Φ2〉 (�) (see text for the definition of the weight).

Fig. 3. Weights of the normalized excited-state wave functions
|Ψ1〉 (�) and |Ψ2〉 (+) on the CAS space.

For |D| < 1 the second solution is well described by
the model space, while for |D| > 1 the situation changes,
and it is the third solution that has a large weight on the
model space. To describe the ground state we are forced
to use a two-dimensional model space. It is clear that the
ground state must belong to the target space. If we use a
classical Jeziorski-Monkhorst formalism, that requires the
same number of vectors in the model and in the target
spaces, the choice of a second target state is problematic,
since different states would be required for different values
of d. As we will see, this problem is absent in the present
formalism, since only one state belong to the target space.

With this simple Hamiltonian, the solution of CC
equations (37, 38) restricted to single excitations is equiva-
lent to the exact diagonalization of the Hamiltonian. How-
ever, an approximate solution can be obtained if the coef-
ficients of the model-space determinants are constrained,
and fixed to the values obtained from the diagonalization
of H in the model space alone This approximation will
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(a)

(b)

Fig. 4. Difference of the approximate energies from the exact
ground-state energy E0 for V = 0.5 (a) and V = 2.0 (b): CAS-
CI (�), LC-CC (+), and C-CC (�).

be indicated as C-CC, and corresponds to an unrelaxed
formalism in the language of reference [44]. As a further
approximation, the CC equations can be linearized, by
neglecting all non-linear terms in equations (37, 38) (LC-
CC). In Figures 4a and 4b the difference between the ex-
act solution for the ground-state and the C-CC and LC-
CC approximate solutions are reported for V = 0.5 and
V = 2.0.

Also the energy error obtained by the diagonalization
in the CAS space alone (CAS-CI) has been reported. The
C-CC solution is very close to the exact solution in the
whole interval. The LC-CC tends to overestimate the cor-
rection, a well-known behaviour of linearized CC meth-
ods [50]. It is worth noting that, although the two equa-
tions to be solved originate from the projection onto the
same vector |Φ3〉, no redundancy occur, and no orthogo-
nalization procedure is required.

6 Conclusions

The structure of a Multi-Reference exponential expansion
of a vector |Ψ〉 from an arbitrary model-space determinant
|ΦI〉 has been investigated. It has been shown that the ex-
pansion becomes particularly simple if the internal part
of the cluster operator T (I) is factorized out, by replac-
ing the reference vector |ΦI〉 with the projection of |Ψ〉
onto the model space, |Ψ̄〉. The principal results of the
present work are represented by equations (20, 26). The
first relates the non-internal part of T (I) to the opera-
tor R(I), which describes the linear expansion of |Ψ〉 onto
the non-orthogonal basis set Êσ|Ψ̄ 〉 (σ ∈ I); the second the
expansion coefficients of R(I) (for any I) to a single set of
coefficients rσ, not depending on I. The rσ are the scalar
products of |Ψ〉 with the vectors Êσ|Ψ̄〉. This formalism de-
scribes the structure of the Multi-Reference cluster expan-
sion for a generic vector |Ψ〉. If |Ψ〉 is an eigenvalue of the
Hamiltonian of the system, it must satisfy the Schrödinger
equation. By introducing |Ψ〉 into this equation, and after
linear projection onto the vectors 〈ÊσΨ̄ |, a set of equations
for the cluster amplitudes is obtained. These equations
can be truncated at a given level of excitation, obtaining
a Multi-Reference Coupled-Cluster structure.

A first check of the present formalism can be done at
the level of the analysis of the wave function: starting from
a Full-CI wave function |Ψ〉, it is possible to compute the
coefficients rσ, and from them the cluster operators T (I).
The results, obtained with a given truncation scheme of
the expansion, must be compared with the exact solu-
tion. One can have, in this way, an idea of the cluster-
ansatz quality. A much more ambitious program is the
direct solution of the cluster equations, i.e. the implemen-
tation of a single-reference MR-CC formalism. However,
several aspects of the present formalism should be deep-
ened. In particular, the problem of the expansion weights
from different determinants, and the precise structure of
the truncated MR-CC equations, deserve further investi-
gations. This will be crucial to estimate the possibility of
practical application of the formalism.

Appendix A: Linear independence
of the vectors E�|Ψ̄〉

Let |ΦI〉 be one of the determinants of the model space,
and |Ψ̄〉 a vector belonging to the model space. Consider
the set of those excitations Êσ(I) such that σ ∈ I, (these
are the excitations that, acting on |ΦI〉, give a non-zero
result). It will be shown that the vectors Êσ(I)|Ψ̄ 〉 form
a linearly independent system if C ≡ 〈ΦI |Ψ̄〉 6= 0. First
of all, we note that the vector Êσ(I)|Ψ̄ 〉, with σ ∈ I,
is different from 0. In fact, σ ∈ I implies Êσ|ΦI〉 6= 0.
Let us consider then a second determinant of the model
space, |ΦJ 〉. The vector Êσ(I)|ΦJ 〉 cannot coincide with
Êσ(I)|ΦI〉. Therefore 〈Êσ(I)ΦI |Êσ(I)Ψ̄ 〉 = C. Since C is
non-null, Êσ(I)|Ψ̄〉 cannot be zero.
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We have shown that the vectors

set I: {Êkpaq
ip+q

(I)|Ψ̄〉 p = 1, ...,m}

are non-zero. To prove that they are linearly independent,
it is enough to show that they span the whole space Lq.
Indeed, in this case, let us consider the second set

set II: {Êkpaq
ip+q

(I)|ΦI〉 p = 1, ...,m}·

Set (II) is also a linear independent vector system that
span Lq. Obviously, there is a one-to-one correspondence
between the vectors of (I) and those of (II), which means
that the two sets contain the same number of vectors.
Therefore, since they both span Lq, the linear indepen-
dence of (II) implies the linear independence of (I).

Proof: We must show that set (I) spans Lq. Let us
consider an arbitrary vector |Ψq〉 ∈ Lq. We expand |Ψq〉
and |Ψ̄〉 with respect to the determinant |ΦI〉:

|Ψ̄〉 = C(
m∑
p=0

Sp,0)|ΦI〉 = C(1 +
m∑
p=1

Sp,0)|ΦI〉 (A.1)

and

|Ψq〉 = C
m∑
p=0

Sp,q|ΦI〉. (A.2)

We must show that it is possible to obtain |Ψq〉 as a linear
combination of the vectors Êkpaq

ip+q
|Ψ̄〉, i.e. as

|Ψq〉 =
m∑
p=0

Rp,q|Ψ̄〉. (A.3)

By equating the two different expressions for |Ψq〉, we ob-
tain

C
n∑
p=0

Sp,q|ΦI〉 = C
n∑

p′=0

Rp′,q

n∑
p′′=1

Sp′′,0|ΦI〉. (A.4)

The product Rp′,qSp′′,0 has internal level of excitation
equal to p′ + p′′. Since equation (A.4) must hold sepa-
rately for each p, we obtain, after division by C on both
sides,

Sp,q|ΦI〉 =
p∑
j=0

Rj,qSp−j,0|ΦI〉. (A.5)

This equation gives the chain of relations

R0,q = S0,q (A.6)

Rp,q = Sp,q −
p−1∑
j=1

Rj,qSp−j,0, (A.7)

that is an explicit recursive way to build the desired op-
erator R. This completes the proof.
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